Evaluation of Conventional, Infra-red, and Vacuum Sealing methods for Specific Gravity measurements

Presentation outline

Background.

- Current methods for testing Specific Gravity.
- Problem Statement.
- Objective.
- Scope.
- Newly proposed methods.
- Results.
- Summary and Conclusion.
- Questions.

Significance

Mass/volume relation is key

- 0.01 change in gravity = .6 lb/cubic ft change in density
- 0.6 lb / cubic ft change = 0.5% change in voids
- Fine aggregates normally account for 35 to 50% of the mix.

Specific Gravity

- Provides a relation ship between mass and volume .
- It is the ratio of the weight of the aggregate to the volume of the aggregate.

 $G = \frac{Mass}{Volume \gamma_{w}}$

Specific Gravity is an indicator of how heavy a material is.

Specific Gravity (Aggregates)

 Dimensional measurements is difficult, since aggregates have irregular shapes.

 $V_{bulk} = (W_{ssd} - W_{submerged}) \quad Y_{water}$ $V_{App} = (W_{OD} - W_{submerged}) \quad Y_{water}$

Volume is determined by the volume of water it displaces.

Specific Gravity (Mixture Maximum Specific Gravity)

Maximum Theoretical Specific Gravity (Gmm): mass per volume of material containing no air voids, compared to unit volume of water

$$G_{mm} = \frac{Mass}{Volume \gamma_{w}}$$

Current methods for measuring Gravity

Aggregates Fine aggregate - AASHTO T 84

Saturated Surface Dry (SSD)

Aggregate is well soaked.
Capillary pores saturated with water.
Surface is dry.

Conventional method Fine Aggregates

Problems with Conventional Method

Achieving proper SSD Condition.Long testing time.

Objective

The objective of this study is: *Evaluate alternative test methods to determine the Specific Gravities of fine aggregates*

<u>Materials</u>

- Fine aggregate:
- 1. #11 LimeStone.
- 2. #11 SandStone.
- 3. Coarse Sand.

Alternative methods for testing specific gravity of aggregate

Vacuum Sealing.Infra-red

Vacuum Sealing

Infra-red

Determining Film Coefficient for Infra-red "Eye"

(Bowl + Aggregate) weighed before and after test is run

RESULTS

Comparison of Specific Gravity of fine Aggregates: **#11 LS**

Comparison of Specific Gravity of fine Aggregates: **#11 SS**

Comparison of Specific Gravity of fine Aggregates: Coarse Sand

